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Abstract - In the present work we propose the use of weighted Bregman distances in the construction of 
regularization terms for the Tikhonov’s functional applied for the formulation and solution of 
problem of photoacoust
simultaneous estimation of the thermal diffusivity and optical absorption coefficient using as synthetic 
experimental data the information on both the amplitude and phase-lag of the temperature at the interface 
sample-gas between the material under analysis and the air chamber of the closed photoacoustic cell. 
 
1. INTRODUCTION 
The Photoacoustic Spectroscopy (PAS) [24], or more generally the Photothermal Spectroscopy [17], are non-
destructive testing methodologies that have been applied for the thermal and optical characterization of materials 
[13, 23, 27, 30, 32]. There are other applications under development, such as gases monitoring [11] and 
investigation on thermal contact resistance for copper coatings on carbon surfaces [21]. 

The photoacoustic effect is the basic phenomenon upon which PAS is built, and it occurs when a material 
sample placed inside a closed cell filled with air is illuminated with periodically interrupted light. The light 
absorbed by the sample is converted into heat through a nonradiative de-excitation process. The periodic flow of 
heat into the air chamber of the cell produces, as an acoustic piston, pressure disturbances in it, which can be 
detected by a microphone mounted at the cell wall. In the model developed by Rosencwaig and Gersho [25], 
known as RG theory, this is the only phenomenon taken into account in the PAS signal. 

In a previous work [28] we used an implicit inverse problem formula on, and the Levenberg-Marquardt 
method, for the PAS with the direct problem modeled with the RG theory. As experi

amplitude of the steady periodic temperature established at the surface of the material sample that is next to 
the air chamber of the closed photoacoustic cell. We were able to estimate, separately, the thermal diffusivity, 
α , the thermal conductivity, k , and the optical absorption coefficient, β , of the material under analysis. 
However, it was not possible to estimate any pair of coefficients simultaneously. 

In [4] we extended our pr ous results [28] by considering also as experimental data the phase-lag between 
the temperature at the sample-gas interface and the modulated light source. An improvement on the solution of 
the inverse problem was observed (smaller confidence bounds) when each parameter was estimated separately, 
except for the thermal conductivity du the n nsitivity of the phase-lag with respect to this parameter. The 
simultaneous estimation of ( )

evi

e to ull se
βα , was performed but the estimated values for the unknowns were corrupted by 

the amplification of the error present in the experimental data. For a set of experimental data with 3% noise, the 
confidence bounds for the estimates were of the order of 8%. Using also a set of 3% noisy experimental data, we 
attempted to estimate simultaneously ( )k,α  or ( )k,β  but the confidence bounds were, respectively, of the order 

n the restoration of atomic force microscopy nanoscale images. Using Csiszár’s measure [16], called 
q-discrepancy, a family of regularization terms was constructed. Berrocal Tito et al. [1] and Pinheiro et al. [22] 
extended this idea by using moments of the q-discrepancy. The former work [1] is related to the estimation of 
parameters in an environmental model, and the latter [22] deals with an inverse problem of radiative properties 
estimation. 

of 14% and 7%. The range of the modulated frequency for external illumination was shifted from 5-17 Hz (in 
[28]) to 1-8 Hz (in [4]) in order to have a higher sensitivity to the parameters to be estimated. 

In both works [4,28], it was required, for most of the test cases, the use of the damping factor in the 
Levenberg-Marquardt method in order to achieve convergence. 

In order to deal with the effects of the noise present in the experimental data, Tikhonov’s regularization [29] 
is the most well known approach used for the solution of ill-posed problems, and it has been used in numerous 
different areas of application [5, 8, 9 18, 19]. Much work has been done on the analysis and proposition of 
regularization terms for Tikhonov’s functional [10, 14, 20, 26, 31], and the proper choice of the regularization 
parameter is of key importance for the implementation of such an approach for the solution of inverse problems 
[3, 12, 15]. 

Cidade et al. [6, 7] proposed the use of Bregman distances [2] as Tikhonov’s regularization terms for one 
application i
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In the present work a one parameter family of regularization terms constructed with Bregman distances 
based on the q-discrepancy function is implemented in the formulation and solution of PAS as an inverse 
problem. The original idea [6,7] was improved by the proper weighting of the unknowns to be determined, and 
we use here the denomination weighted Bregman distances. We have focused on the simultaneous estimation of 
the sample thermal diffusivity, α , and optical absorption coefficient, β . The results are significantly improved 
in comparison to our previous works [4, 28]. 

The effects of the parameter q used in the construction of the regularization terms, as well as those of the 
regularization parameter λ  are investigated. Some test case results are presented. 

As real experimental data is not yet available, we have used synthetic experimental data. The experimental 
apparatus is available in our institution, and in the near future we will be able to acquire real experimental data. 
Before dealing with the difficulties associated with the real experiments, we decided to perform the numerical 
simulations in order to evaluate the best conditions in which the experiments will be performed. 

 
2. MATHEMATICAL FORMULATION AND SOLUTION OF THE DIRECT PROBLEM – RG 
THEORY 
Consider the cylindrical closed photoacoustic cell represented schematically in Figure 1. The sample of the 
material under analysis is placed upon a backing material, and the other boundary of the sample adjoint to the air 
chamber of the cell, is exposed to an incident modulated light with intensity 

( ) ( tItI ωcos1
2
1

0 += )                                                                     (1)                           

where is the maximum intensity of the incident light, and 0I ω  is the angular frequency of the chopping 
mechanism. 

It is assumed that the light doesn’t go through any interaction within the air chamber and is fully absorbed 
by the material sample according to Beer’s law 

 ( ) ( )tIetxI x
s

β=,                                                                             (2) 

where β is the optical absorption coefficient.    
 
 
 
 
 
 
 
 
 

Figure 1. Schematical representation of the closed photoacoustic cell. 
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The volumetric heat generation at the sample due to the light absorbed is given by 
 

( ) ( ) ( teI
dx

txdI
txS xs ωβ β cos1

2
1,

, 0 +== )                                                          (3) 

and the mathematical formulation of the heat conduction problem in the photoacoustic cell is given by 

( ) ( )
g

g

g

g lx
t

tx
x

tx
<<

∂

∂
=

∂

∂
0,

,1,
2

2 θ
α

θ                                                        (4a) 

( )                                     (4b) 

 
( ) ( )

ssb
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b

b lxll
t

tx
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tx
−<<+−

∂
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=
∂

∂
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,1,
2

2 θ
α

θ                                          (4c) 

with the interface conditions given by 
( ) ( ) ( ) ( )tltltt sbssgs ,,,,0,0 −=−= θθθθ                             (4d, e) 
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and the initial conditions given by 
( ) ( ) ( ) ( ) sbsbssgg lxllxxlxlxx −≤≤+−=≤≤−=≤≤= ,00,,0,00,,0,00, θθθ      (4h-j) 

where j is the imaginary number 1− , θ  is the complex valued temperature,   represents the thermal 
conductivity, 

k
α  the thermal diffusivity, and the subscripts sg, and  denote air (gas), sample and backing 

material, respectively.  
b

The complete solution for problem (4) is given in [24, 25, 28]. Here we are interested only in the 
temperature at the sample-gas interface, i.e. 0=x , 

                     ( ) tjeFt ωθθ 00,0 +=                                                                 (5)  

where is the time-independent (dc) component of the solution at 0F 0=x , and 0θ is a complex valued number 
given by 

H
pp

ppp
⎥
⎦

⎤
⎢
⎣

⎡
−

+−
=

54

321
0θ                                                                (6a) 

 
( )( ) ( )( ) ( ) sssss lll erbpebrpebrp βσσ −− −=−+=+−= 2,11,11 321

                  (6b-d) 
 

( )( ) ( )( ) ,11,11 54
ssss ll ebgpebgp σσ −−=++=                           (6e,f) 
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With the PAS experimental apparatus, we measure the ac component of the temperature (second term on the 

right hand side of eqn. (5)), and only the real part is of physical interest. Therefore, we choose only the terms  
 

[ ] )cos(),0(Re 0 φωθθ += tt ca
                                                     (7) 

Writing,  
[ ]01210 Re   , θθθθθ =+= j       and  [ ]02 Imθθ =    and   

0 0
je φθ θ=                  (8, 9)                            

we obtain the amplitude 
2
2

2
10 θθθ +==A                                                                (10) 

and the phase-lag 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2arctan
θ
θφ                                                                          (11) 

If we know the optical and thermal properties of the sample, the thermal properties of the other materials in 
the photoacoustic cell, the physical dimensions and represented in Figure 1, the frequency of the 
chopping mechanism, and the intensity of the incident light, then eqns (10) and (11) provide the calculated 
values for the amplitude and phase-lag of the temperature at the interface sample-gas between the material and 
the air chamber at . 

bs ll , gl

0=x
 
3. MATHEMATICAL FORMULATION AND SOLUTION OF THE INVERSE PROBLEM 
Consider a vector of unknowns,  

                                                                                                (12)  { }Nu
= ZZZZ ,...,, 21

r
T

where , are thermal or optical properties of a sample of the material being tested by 
Photoacoustic Spectroscopy (PAS), and represents the total number of unknowns.  

ui NiZ ,...,2,1, =

uN

For each modulation frequency used in the PAS experiment, i.e. , if fNi ,...,2,1= , where πω 2iif =  

and  is the total number of frequencies considered, we acquire the experimental data on both the amplitude fN
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of the steady periodic temperature at 0x = , i.e. , 
i

Aexp fNi ,...,2,1= , and the phase-lag 
iexpφ , 

. fNi ,...,2,1=
The inverse problem is then formulated as an optimization problem in which we seek to minimize 

Tikhonov’s regularization functional  

( ) ( ) ( ) ( )
22

1

,
fN

,
R T

i i
i

T Z C Z E S Z Z R R S Z Zλ λ
=

⎡ ⎤= − + = +⎣ ⎦∑
ur ur ur ur ur ur ur urR                                (13) 

where  and  represent the calculated and experimental values of the amplitude, when , 

and the calculated and experimental values of the phase-lag, when 

)(ZCi

r
iE fNi ,...,2,1=

fff NNNi 2,...,2,1 ++= ,  is the 
vector of residues given by 

R
ur

  { }T
calccalccalccalc fNfNfNfNii

AAAAR expexpexpexp ,,,,,
11

φφφφ −−−−= LL
r                               (14) 

λ is the regularization  parameter,  represents  the regularization terms, and S
R

Z
ur

 is a vector of reference  
values for the unknowns we want to determine, Z

ur
. We have made an adjustment by a constant factor in the 

calculated and experimental values for the amplitudes,  and 
i

Aexp fcalc NiA
i

,...,2,1, = , to make them of the 
same order of magnitude as the phase-lag values. 

Using Csiszár’s measure [16], here called q-discrepancy [6, 7], we have 

( )
q

mZ
Z

q
Z

qq
i

N

i
iq

u −
+

= ∑
=11

1r
η                                                          (15) 

where is a measure associated  with a prior information (it will cancel out in the calculations to be done next), 
and the Bregman distance [2, 6,7] 

m

( ) ( ) ( ) ( ), ,
R R R

q q q qD Z Z Z Z Z Z Zη η η= − − ∇ −
Rur ur ur ur ur ur ur                                     (16) 

a family of one parameter regularization terms can be constructed. From eqns (15) and (16), we obtain 

( ) (∑
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−−
−

+
=

uN

i

R
ii

q

qq

i
R

q ZZZq
ZiZ

Z
q

ZZD R
i

R
i

11
1,

rr )
                                          (17a) 

We must stress that varying the parameter q, with , then a family of regularization terms is obtained. 0≥q

By taking the limit  in eqn (17), one gets the cross-entropy regularization term  0→q

( ) ( )∑
= ⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
−−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

uN

i

R
iiR

i
i

R ZZ
Z

iZ
ZZZD

1
0 ln,

rr                                               (17b) 

and with  the usual energy regularization term is derived, namely 1=q

( ) (∑
=

−=
uN

i

R
ii

R ZZZZD
1

2
1 2

1,
rr )                                                     (17c) 

As the unknowns , may be of different orders of magnitude, we propose a modification to 

eqn. (17a) by introducing a weighting factor 
ui NiZ ,...,2,1, =

,1
iZf uNi ,...,2,1= , such that  

( ) ( )∑
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−−
−

+
=

u

i

N

i

R
ii

q

qq

i
Z

R
q ZZZq

ZiZ
Z

fq
ZZD R

i

R
i

1

1
1

1,
rr                                     (18a) 

( )R
q ZZD

rr
,  denominated weighted Bregman distances, for the particular case of  results in  0→q
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( ) (∑
= ⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
−−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

u

i

N

i

R
iiR

i
i

Z

R ZZ
Z

iZ
Z

f
ZZD

1
0 ln1,

rr )                                                (18b) 

In the present work we consider the weighting factor  

u

q

Z NiiZf R
i

,...,2,1,
1

==
+

                                                             (19) 

The regularization term in eqn. (13) may then be either 

( ) ( ), ,R R
qS Z Z D Z Z=

r r r r
          or      ( ) ( ), ,R R

qS Z Z D Z Z=
r r r r

                         (20a,b) 

In order to minimize the cost function given by eqn. (13), we write the critical point equation as 

( )
0

T Z

Z

∂
=

∂

r

r ,    i. e.    ( )
u

j

Nj
Z

ZT ,...,2,1,0 ==
∂

∂
r

        resulting        0T
ZJ R Sλ+ =r
rr                     (21a,b, 22)                             

where the elements of the Jacobian matrix J are given by 

, 1, 2,..., 2s
s t f

t

CJ s N
Z

∂
= =

∂ uN,...,2,1=   and  t      and       
T

N
Z

u
Z

S
Z

S
Z

SS
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

∂
∂= ,...,,

21
r
r

  (23, 24)                             

The elements of the Jacobian matrix J , given by eqn. (23), were calculated numerically by using a central 
finite-difference approximation. By using the Taylor expansions  

( ) ( )1n n nR Z R Z J Z+ = + ∆
r r r r r

n ,         ( ) ( )1n n n
Z ZS Z S Z J Z+ n

S= + ∆r
r rr r r                  (25,26) 

where is used as the iteration index in the iterative procedure that will be constructed for the estimation of the 
vector of unknowns 

n
Z
r

, 
1n n nZ Z Z+ = + ∆

r r r
                                                                          (27) 

and the elements of the Jacobian matrix 
SJ  are given by 

uu
uvv

Z
S NNu

Z
S

ZZ
S

J u

vu
,...2,1  and ,...,2,1, ==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂

∂
= ν                           (28) 

Introducing eqns (25) and (26) into eqn. (22) results in the following: 

( ) ( )n
Z

nTnnn
S

nTn SRJZJJJ r
rrr

λλ +−=∆+                                         (29) 

We are now in a position to construct an iterative procedure for the estimation of the vector of unknowns 
Z
r

. We first choose an initial guess 0Z
r

, which may be for example, 
0 RZ Z=
r r

                                                                                   (30) 

and then we calculate the Jacobian matrices 0J and 0
SJ , whose elements are given by eqns (23) and (28), 

respectively, as well as the elements of the vector of residues given by eqn. (14). Next, the vector of corrections 
0Z∆
r  is calculated by solving the system of algebraic linear eqns (29). The vector, with new estimates for the 

unknowns, 1Z
r , is obtained using eqn. (27). The iterative procedure for calculating the corrections nZ∆

r
 with eqn. 

(29) and new estimates for the unknowns 1nZ +
r

 with eqn. (27) is continued until a convergence criterion such as  

i

i

Z
Z

ε∆
<    for uNi ,...,2,1=                                                           (31) 

is satisfied, where ε  is a given tolerance.  

 Before we proceed, we must show how the elements of the vector 
ZS r
r

, and the elements of the Jacobian 
matrix SJ , are calculated. 
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From eqns (20a,b) and (24) we observe that  

q

j j

DS
Z Z

∂∂
=

∂ ∂
         or     

u
j

q

j

Nj
Z
D

Z
S ,...,2,1, =

∂

∂
=

∂
∂                               (32a,b) 

and from eqns (28) and (32a,b) we obtain 
2 2

2 2

0
u v

q q

S u u

D D
or if u v

J Z Z
if u v

⎧∂ ∂
=⎪= ∂ ∂⎨

⎪ ≠⎩

          
uNu ,...,2,1=   and        (33a,b) 

uNv ,...,2,1=

The first and second derivatives of the Bregman distance in eqns (32a,b) and (33a,b) are obtained from eqns 
(17a,b) or (18a,b). These derivatives, as well as the Bregman distances, are shown in Table 1 for both situations: 
(a) regular Bregman distances, and (b) weighted Bregman distances. 
 
Table 1: Bregman distances used as regularization terms, and the first and second derivatives for both cases: (a) 
regular Bregman distances, and (b) weighted Bregman distances. 

(a) regular (b) weighted 
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4. RESULTS AND DISCUSSION 
As a continuation of our previous works [4,28] we are here interested in the numerical evaluation of the PAS 
before running the real experiments. Therefore, we use in the solution of the inverse problem synthetic 
experimental data generated with  

( ) fiexactii NirZCE 2,...,2,1,576.2 =+= σ
r

                                           (34) 

where is a random number in the range [-1, 1], and ir σ represents the standard deviation of the measurement 
errors. The level of noise in the experimental data that will be reported next for the numerical test cases is 
computed by 

( ) f
i

i
i Ni

C
rnoise 2,...,2,1%,100576.2% =×=

σ                                                   (35) 

and we take the maximum value of the fi Ninoise 2,...,2,1 (%), = . 
In order to compare the performance of the approach developed in the present work with that presented in 

[4, 28], we used the same geometry, process, thermal and optical parameters for the photoacoustic cell and for 
the sample of the material under analysis. In the test cases performed we have used frequencies of the modulated 
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incident light in the range [1,8] Hz which may yield higher sensitivities to the parameters we want to determine 
[4]. In Table 2 is presented a summary of the process, thermal and optical parameters used. 

 
Table 2: Process, thermal and optical parameters for the photoacoustic cell. 

backing material sample gas light 

Aluminum,    
,  

,    
 

smb /1082.0 24−×=α
mKWkb / 201=
mlb

3105 −×=

Opaque glass, 
, 

,    
,    

 

sms /10286.5 27−×=α
1310 −= mβ

mKWks / 047.1=

mls
3105 −×=

Air, 
,  s/m1019.0 24

g
−×=α

mKWkg / 0239.0= ,    
 mlg

3102.1 −×=

Laser HeNe or other 
monochromatic light, 

 2
0 / 100 mWI =

modulation frequencies used 
Hzf 8,...,2,1=  

 
In Figure 2 are presented the results for the simultaneous estimation of the thermal diffusivity, sα , and 

optical absorption coefficient, β , of opaque glass, using three approaches: (i) without regularization, (ii) with 
regularization using the regular Bregman distances, and (iii) with regularization using weighted Bregman 
distances. The first approach corresponds to 0=λ in eqn. (13), and for the second and third approaches 

03.0=λ  and with the regularization terms given, respectively, by eqns (20a) and (20b). The reference 
values and the initial estimates for the thermal diffusivity and optical absorption coefficients were taken as: 

, , , and . The exact values 
which we want to recover are shown in Table 2. 

1=q

smR
s /100.4 27−×=α 12105.9 −×= mRβ sms /100.5 260 −×=α 130 109.0 −×= mβ

Five computations were performed for each approach, using for each computation a different set of pseudo-
random numbers, simulating therefore five different experiments. The value of 5.0=σ  in eqn. (34) led to 
synthetic experimental data with noise up to 4%. 

 In order to achieve convergence the full Newton correction step in eqn. (27) was not used. Instead we have 
applied a gain factor γ , with ,10 ≤≤ γ such that  

nnn ZZZ
rrr

∆+=+ γ1                                                                       (36) 

To obtain the results presented in Figure 2 we used 5.0=γ . 
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Figure 2. Estimates and confidence bounds for (a) thermal diffusivity, and (b) optical absorption coefficient 
using three approaches: without regularization; with regularization using regular Bregman distances; and with 
regularization using weighted Bregman distances. 
 

From Figure 2 we may conclude that the use of the regularization terms with weighted Bregman distances 
yielded better results, i.e. smaller confidence bounds. Nonetheless we must be careful because the confidence 
bounds were calculated using the inverse of the matrix , and therefore higher values of S

T JJJ λ+ λ  could yield 
smaller confidence  bounds. This subject deserves further investigation. 

In Figure 3 are shown the values of the confidence bounds as a percentage of the estimated values of the 
unknowns, and the values of the percentage difference between the estimated and exact values of the unknowns. 
Five different runs were performed for each of the two following approaches: (i) without regularization, i.e. 

0=λ  in eqn. (13), and (ii) with regularization using the weighted Bregman distances. For the second approach 
it was considered 03.0=λ  and . Here we have used the following reference values and initial estimates 

for the unknowns:  and . The exact values which we 

1=q
smR

ss /100.4 270 −×== αα 120 105.9 −×== mRββ
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want to recover are the same used for the test case whose results are presented in Figure 2, i.e. 
 and .It should be noted that in order to obtain the results shown in 

Figure 3 the reduction on the Newton correction step was not necessary, and we have therefore used 

smexact
s /10286.5 27−×=α 1310 −= mexactβ

1=γ  in 
eqn. (36), going back to eqn. (27). It was also observed that the use of two different initial guesses led to very 
similar estimates for the unknowns, i.e. within the same order of confidence bounds and deviation of the exact 
values. 
 

 
 

 

 

 

 

 

 

1 2 3 4 5
4

6

8

10

12

14

16

18

(a)

  α, without regularization 
  β, without regularization
  α, with regularization (weighted Bregman)
  β, with regularization (weighted Bregman)

C
on

fid
en

ce
 b

ou
nd

s 
(%

)

Run
1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

(b)

  α, without regularization 
  β, without regularization
  α, with regularization (weighted Bregman)
  β, with regularization (weighted Bregman)

 D
iff

er
en

ce
 b

et
w

ee
n 

es
tim

at
ed

 
an

d 
ex

ac
t v

al
ue

s 
(%

)

Run

Figure 3. (a) Confidence bounds as a percentage of the estimated values for the unknowns, and (b) the 
percentage difference between the estimated and exact values of the unknowns. 

 
From the results shown in Figure 3 we observe a reduction in the values of the confidence bounds when the 

regularization with the weighted Bregman distances is used, but as mentioned before this reduction may have 
been caused by the terms added to the diagonal of the information matrix. The difference between the estimated 
and exact values do not present a clear trend to be smaller when the regularization is used, but as shown next in 
Figure 4 the dispersion of this difference changes with the variation of the parameter q  as well as with the 
variation of the regularization parameter λ . 

In Figure 4 are presented the variation of the average for the confidence bounds as a percentage of the 
estimated values of the unknowns, and the variation of the average values of the differences between the 
estimated and exact values, with the regularization parameter λ  and with the parameter . q
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Figure 4. Average values, in 10 runs, for the confidence bounds and difference between estimated and exact 
parameters as a function of the regularization parameter λ  and for (a) , (b) 0→q 1=q , and (c) . 2=q
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It must be stressed that in Figure 4 the error bars correspond to one standard deviation from the average 
values of both  the percentage differences and confidence bounds (as a percentage of the estimated values) 
obtained in 10 runs for each value of q and for each value of λ . The standard deviation was calculated from the 
distribution of the results obtained in the 10 runs. Further, from the observation of the error bars shown in Figure 
4 we conclude that the deviation of the estimates for α and β become smaller as higher values of λ are 
considered for a given value of q. 

The average values presented in Figure 4 were obtained from 10 runs of the algorithm using experimental 
data with noise up to 4% and the regularization with the weighted Bregman distances. 

From the results presented, we conclude that for different values of the pair ( )q,λ  the error in the estimates 
of the unknowns are of the order of, or smaller than, the level of the noise present in the experimental data, 
which represents an improvement on the results presented in [4]. 

 
5. CONCLUSIONS 

 In this work we have used an inverse problem approach for the Photoacoustic Spectroscopy (PAS) in which 
we were interested in estimating simultaneously the thermal diffusivity and optical absorption coefficient of a 
sample. 

The use of weighted Bregman distances constructed with the q-discrepancy functional as regularization 
terms in Tikhonov’s functional appears to yield better estimates for the unknowns. We have varied both the 
regularization parameter λ  and the parameter q in the weighted Bregman distance in an attempt to find optimal 
values for such parameters. We have observed that by increasing λ  we obtain a smaller dispersion of the 
estimates for the unknowns. 

In real applications, the exact values for the parameters may be far from the available reference values, and 
therefore we have also implemented a feed-back approach in which the estimates at the end of one cycle of 
iterations are used as the new values for the reference parameters in the subsequent cycle of the iterations. This 
procedure will be the subject of further evaluation in a future work. Further, in the future we will also perform 
some real experiments in an experimental apparatus that is available at our institution. 
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